Deep learning to detect optical coherence tomography-derived diabetic macular edema from retinal photographs: a multicenter validation study

Xinle Liu, PhD, Tayyeba K. Ali, MD, MS Preeti Singh, Ami Shah, MD, Scott Mayer McKinney, MS, Paisan Ruamviboonsuk, MD, Angus W. Turner, MSc,FRANZCO, Pearse A. Keane, MD, FRCOphth, Peranut Chotcomwongse, MD, Variya Nganthavee, MD, Mark Chia, MBBS, MMed, Josef Huemer, MD, FEBO, Jorge Cuadros, OD, PhD, Rajiv Raman, MBBS, MS, Greg S. Corrado, PhD, Lily Peng, MD, PhD, Dale R. Webster, PhD, Naama Hammel, MD, Avinash V. Varadarajan, MS, Yun Liu, PhD, Reena Chopra, BSc, Pinal Bavishi, BE

PII: S2468-6530(22)00001-X
DOI: https://doi.org/10.1016/j.oret.2021.12.021
Reference: ORET 1142

To appear in: Ophthalmology Retina

Received Date: 13 September 2021
Revised Date: 9 November 2021
Accepted Date: 29 December 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Deep learning to detect optical coherence tomography-
derived diabetic macular edema from retinal
photographs: a multicenter validation study

Xinle Liu, PhD†, Tayyeba K. Ali, MD2,3†, Preeti Singh, MS1, Ami Shah, MD2, Scott Mayer McKinney, MS1, Paisan Ruamviboonsuk, MD4, Angus W. Turner, MSc, FRANZCO5,6, Pearse A. Keane, MD, FRCOphth7, Peranut Chotcomwongse, MD4, Variya Nganthavee, MD4, Mark Chia, MBBS, MMed6,7, Josef Huemer, MD, FEBO7, Jorge Cuadros, OD, PhD6, Rajiv Raman, MBBS, MS9, Greg S. Corrado, PhD1, Lily Peng, MD, PhD1, Dale R. Webster, PhD1, Naama Hammel, MD1*, Avinash V. Varadarajan, MS1, Yun Liu, PhD1, Reena Chopra, BSc1,7*, Pinal Bavishi, BE1

1 Google Health, Google LLC, Mountain View, CA, USA
2 Work done at Google Health via Advanced Clinical, Deerfield, IL, USA
3 Present affiliation: California Pacific Medical Center, Department of Ophthalmology, San Francisco, CA
4 Department of Ophthalmology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
5 Lions Outback Vision, Lions Eye Institute, Nedlands, Western Australia, Australia
6 University of Western Australia, Perth, Western Australia, Australia
7 NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
8 EyePACS Inc., Santa Cruz, CA, USA
9 Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, India

† Equal contribution
* Co-corresponding authors

Meeting presentation

Part of this work has been presented as an abstract at ARVO Annual Meeting 2020.

Financial support

Google LLC funded this study, and participated in the design of the study, conducting the study, data collection, data management, data analysis, interpretation of the data, preparation, review and approval of the manuscript.

Conflicts of interest

P.R. is a consultant for Roche, Novartis, and Bayer. P.A.K. has acted as a consultant for DeepMind, Roche, Novartis, and Apellis and is an equity owner in Big Picture Medical. He has received speaker fees from Heidelberg Engineering, Topcon, Allergan, and Bayer. He is supported by a Moorfields Eye Charity Career Development Award (R190028A) and a UK Research & Innovation Future Leaders Fellowship (MR/T019050/1). J.H. served on advisory boards for Roche. He has received speaker fees from Bayer and Zeiss. J.C. is CEO of EyePACS, Inc.. X.L., P.S., S.M.M., G.S.C., L.P., D.R.W., N.H., A.V.V., Y.L., R.C., and P.B. are employees of Google LLC and own Alphabet stock.

Running head

Deep learning to predict OCT-derived labels of DME from CFP

Address for reprints

Naama Hammel, MD, Google Health, Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA. nhammel@google.com

Reena Chopra, BSc, Google Health, Google LLC, 6 Pancras Square, Kings Cross, London N1C 4AG, UK. reenac@google.com
55

Keywords

56 Diabetic Retinopathy, Diabetic Macular Edema, Deep Learning, Optical Coherence Tomography, Artificial Intelligence

59

Word count

61 3848 words

62

Acknowledgments

63 The authors would like to thank Ehsan Rahimy, MD, Siva Balasubramanian, MD, PhD, Ilana Traynis, MD, Ali Zaidi, MD, and all the graders for guideline iteration and labeling retinal images; Mahvish Nagda, MS, Derek Wu, BS, Jieying Luo, PhD, Roy Lee, BS, Anita Misra B. Tech, Richa Tiwari, PhD, Fred Hersch, MBBS, MPH, Rajroshan Sawhney, BE, Yan Zhen Tan, LLB, Warisara Pattanapongpaiboon, MD, Vaibhav Shah, DNB, for technical and logistical support; Divleen Jeji, MD, MBA and Craig Merrell, MD, PhD for their feedback on the manuscript; and the Google Health labeling software infrastructure team for their assistance.
Abstract

Purpose
To validate the generalizability of a deep learning system (DLS) that detects diabetic macular edema (DME) from two-dimensional color fundus photography (CFP), where the reference standard for retinal thickness and fluid presence is derived from three-dimensional optical coherence tomography (OCT).

Design
Retrospective validation of a DLS across international datasets.

Participants
Paired CFP and OCT of patients from diabetic retinopathy (DR) screening programs or retina clinics. The DLS was developed using datasets from Thailand, the United Kingdom (UK) and the United States and validated using 3,060 unique eyes from 1,582 patients across screening populations in Australia, India and Thailand. The DLS was separately validated in 698 eyes from 537 screened patients in the UK with mild DR and suspicion of DME based on CFP.

Methods
The DLS was trained using DME labels from OCT. Presence of DME was based on retinal thickening or intraretinal fluid. The DLS’s performance was compared to expert grades of maculopathy and to a previous proof-of-concept version of the DLS. We further simulated integration of the current DLS into an algorithm trained to detect DR from CFPs.

Main Outcome Measures
Superiority of specificity and non-inferiority of sensitivity of the DLS for the detection of center-involving DME, using device specific thresholds, compared to experts.

Results

Primary analysis in a combined dataset spanning Australia, India, and Thailand showed the DLS had 80% specificity and 81% sensitivity compared to expert graders who had 59% specificity and 70% sensitivity. Relative to human experts, the DLS had significantly higher specificity (p=0.008) and non-inferior sensitivity (p<0.001). In the UK dataset the DLS had a specificity of 80% (p<0.001 for specificity > 50%) and a sensitivity of 100% (p=0.02 for sensitivity > 90%).

Conclusions

The DLS can generalize to multiple international populations with an accuracy exceeding experts. The clinical value of this DLS to reduce false positive referrals, thus decreasing the burden on specialist eye care, warrants prospective evaluation.
Introduction

Diabetic macular edema (DME) is characterized by retinal thickening and an accumulation of intraretinal fluid (IRF) caused by abnormal vascular permeability and leakage in diabetic retinopathy and diabetes mellitus, and is a leading cause of blindness among working-aged adults. Prompt detection and treatment of DME is imperative to stabilize vision. Diabetic eye screening programs utilize colour fundus photography (CFP) for detection of diabetic retinopathy (DR) and DME. For DME, the presence of hard exudates (HE) near the fovea is used as a surrogate marker for the presence of fluid. However, this marker alone is an imperfect indicator of DME and has limited specificity and sensitivity.

Clinical testing via three-dimensional optical coherence tomography (OCT) is increasingly recognized as the reference standard for detection of DME. Clinical trials investigating DME therapies have relied on OCT-derived central retinal thickness as an inclusion criteria and clinical endpoint. Another important marker of DME activity on OCT is the presence of intraretinal fluid (IRF), which may gauge response to treatment. Despite the advantage of OCT for reliable diagnosis and classification of DME, this modality remains unavailable in many parts of the world due to its high cost and need for expert interpretation, resulting in ongoing reliance on CFP for DME screening.

Deep learning, a type of artificial intelligence, has been used for computational detection of DR and DME from CFP. These deep learning systems (DLSs) are typically trained using CFP with HE-labels and are unlikely to address the sensitivity and specificity gaps. To improve upon expert performance, our group previously reported a DLS that predicted OCT-derived DME labels using only CFP as input (the “DME-DLS”). Other groups have similarly evaluated feasibility of systems that predict OCT-derived central retinal thickness using a CFP input and obtained promising results.
This is the first study of its kind to generalize a DLS aimed at predicting OCT-derived ground truth using CFP as input in multiple, independent screening populations. The performance of the DME-DLS was compared to both expert grading of CFP and the previously reported version of the DLS. Additionally, we analyzed the ability of the DLS in detecting center-involving DME (ci-DME) with definitions based on retinal thickening and IRF presence. As a secondary outcome, the DLS performance for detecting the presence of OCT-based DME irrespective of location was evaluated. To better understand the potential impact of improved DME screening in the context of broader DR screening, we further evaluated the net effect of replacing the DME component of a previously published and extensively validated Krause et al. DLS that detects both DR and DME using conventional grading guidelines.18,19,20
Methods

Study data were obtained from multiple sources. These data were collected with the participant's consent and/or de-identified in accordance with local regulatory requirements (e.g., HIPAA) and/or reviewed by the institution's Ethics Committee or IRB prior to our receipt of the dataset. The study adhered to the tenets of the Declaration of Helsinki.

Datasets

Development datasets

Our DLS was developed using 1,167,791 retrospectively collected paired single-field CFP and OCT images from four sites in three countries: Thailand (1,299 images from Lerdsin Hospital and 7,072 from Rajavithi Hospital), the UK (1,156,142 images from Moorfields Eye Hospital), and the US (3,278 images from Alameda County Health System) (Table S1). All images were collected from diabetic patients except for the UK dataset, which consisted of a wide range of retinal pathology. Data were divided randomly, by patient, into train (98.8%) and tune (1.2%) sets, with the ratio based on an empirical estimation of necessary tuning versus training dataset sizes. The train set came from Thailand Lerdsin (100%), Thailand Rajavithi (68%), and the UK (99.3%), while the tune set was gathered from Thailand Rajavithi (32%), the UK (0.7%) and the US (100%). Some datasets were used exclusively for training or tuning to help assess inter-dataset generalization during tuning, thus their ability to generalize to new datasets.

Validation datasets

Validation of the DLS was performed on independent datasets, comprising patients with diabetes from institutions in Australia, India, Thailand and the UK. Datasets from Australia and India were external validation sets. The validation dataset from Thailand was from the same institution as the developmental set; however, it was from a different temporal period.
and consisted solely of a screening population (compared to retina clinic patients). The UK
dataset was an internal validation dataset from the same institution and an overlapping time
period (though without patient duplication) (Table 1).

Definitions, image acquisition, and grading

Definition of OCT-based DME

DLS performance was evaluated using two separate definitions of DME: one based on
retinal thickening and the second on IRF presence; each definition was further divided into
ci-DME and DME (combined ci-DME and non-center involving [nci-DME]).

For retinal thickening, device- and gender-specific thresholds were used to define ci-DME in
ETDRS zone 1/central subfield thickness (CST) in all datasets (Table S2).³,²¹-²³ For IRF
presence, ci-DME was defined as fluid present within ETDRS zone 1. Similarly, nci-DME
was defined as retinal thickening or IRF occurring solely in zones 2–9.²⁴ The retinal
thickening based ci-DME definition was used for primary analysis; all other definitions were
used for secondary analysis. Further details of defining DME, OCT retinal thickness
acquisition and OCT grading of fluid presence can be found in the Supplementary Methods
S1.

CFP grading for comparison to DLS

To provide a baseline comparison for the DLS, experienced graders labeled CFP in the
validation set for DR severity and for the presence and location of HE within 1500 µm of the
foveal center. DR level was based on the International Clinical Diabetic Retinopathy Disease
Severity Scale²⁵ and presence of HE, reflecting clinical practice in DR screening programs.
Further details on grading CFPs and image quality guidelines are provided in the
Supplementary Methods S1.
Table 2 describes the availability of ground truths and expert grades for comparison in the validation datasets.

Deep learning system

Development

The DME-DLS was trained similarly to the proof-of-concept version, with some significant upgrades to aid generalization. The DME-DLS is a deep convolutional neural network trained with TensorFlow. The DLS takes CFP as input and simultaneously outputs predictions for thickness-based ci-DME, IRF-based ci-DME, and thickness-based DME (inclusive of both ci-DME and nci-DME). While OCT provided the ground truth labels, the actual OCT images were never seen by the DLS during training or validation (Figure 1A). To improve performance, the DLS was developed using multi-task learning with the following co-trained tasks: subretinal fluid presence, prediction of sex, and prediction of age. To aid generalization, this version of the DME-DLS was also trained on the large UK development dataset, with automated labels generated using a previously described segmentation DLS.

The current model was trained to predict the volume of fluid output by the segmentation DLS instead of fluid presence alone and it used the EfficientNet-B5 architecture to train on the much larger dataset in a reasonable amount of time. Further details on the DLS design are available in Supplementary Methods S2.

Evaluation

To enable comparison with expert grades, the output of the DLS was thresholded to produce a binary result: DME present or absent. As the Australia, India and Thailand datasets consisted of a screening population where the pre-test probability for presence of DME would be lower, high-specificity operating points were chosen, with separate operating points for ci-DME (thickness and IRF presence) and DME (thickness) outputs. Operating points were selected to maximize specificity on the Thailand and US tune sets, subject to the
constraint that the 95% confidence lower bound of DME-DLS sensitivity was at most 10% lower than the expert graders. The same operating points were used for the aggregated analysis of all three datasets as well as for each individual country’s dataset. Since the UK dataset contained data from a pre-screened population with evidence of mild DR and a suspicion of DME, the pre-test probability for presence of DME would be higher, and so a separate high-sensitivity operating point was chosen with 95% confidence lower bound sensitivity of 90%. All operating points were pre-selected before evaluating the model on the validation datasets (Figure 1B).

We further simulated integration of this DME-DLS into another previously validated DLS,18 with the originally described DLS being referred to as the Krause et al. DLS henceforth. The Krause et al. DLS detects DR and DME and was developed on an independent dataset of CFP using the presence of HE as labels for DME. Our DME-DLS was used to replace the DME detector in the Krause et al. DLS without modifying the DR component (Figure S1).

Using the adjudicated Indian dataset, we then compared the original and modified version of the Krause et al. DLS for detecting patients with vision-threatening DR (VTDR), defined as severe non-proliferative DR, proliferative DR, or ci-DME (retinal thickening) in at least one eye.

Statistical analysis

For pre-specified primary analyses, the performance of the DLS was compared with experts, specifically testing superiority of specificity and non-inferiority of sensitivity (at a 10% margin) for detection of ci-DME (thickening) on the aggregation of Australia, India, and Thailand validation sets. Superiority comparisons for specificity were two-sided McNemar tests,30 while non-inferiority comparisons for sensitivity with a pre-specified margin of 10% were Wald tests.31 Since there were multiple graders, we adjusted for the clustered nature of the data using Obuchowski’s method for paired binomial proportions.32,33 Confidence intervals for sensitivities and specificities were calculated using the exact Clopper-Pearson interval.
We further conducted receiver operating characteristic (ROC) analysis to evaluate the DLS both in isolation and in comparison to the previously reported version of the DLS. Non-parametric confidence intervals on the area under the curve (AUC)-ROC were computed with DeLong’s method.34

Secondary analysis evaluated DLS performance when compared to experts on a per-dataset level (Australia, India and Thailand). We also analyzed DLS performance for detection of DME defined by fluid presence, DME irrespective of location, and when restricted to mild-to-moderate DR, where ground truth was available. On the UK dataset, we tested for sensitivity of > 90% and specificity of > 50% using an exact one-sided binomial test.
Results

The DME-DLS was validated on independent, screening datasets from Australia, India and Thailand. Additionally, the DME-DLS was validated in a cohort of patients from the UK screening program referred specifically for maculopathy based on CFP. The characteristics of the cohorts are provided in Table 2. The rate of c-imDME was higher in the India dataset (21%) compared to the other 3 datasets (3–5%). After excluding ungradable images, the DLS was validated on 3574 images.

DME based on retinal thickening

Our primary analysis evaluated the DME-DLS against a reference standard of c-imDME based on retinal thickening in a combined cohort of the Australia, India, and Thailand datasets and compared it to experts grading maculopathy on CFP. The DME-DLS had a specificity of 80% and a sensitivity of 81% compared to expert specificity of 59% and sensitivity of 70%. The DME-DLS had superior specificity (p=0.008) and non-inferior sensitivity (p<0.001), reducing false positives by 51%. Exploratory analysis revealed the DME-DLS also had superior sensitivity (p=0.014) (Table 3).

Per-dataset, the DME-DLS’s specificities (vs human experts) for the Australia, India, and Thailand datasets were 86% (vs 57%; p=0.03), 77% (vs 44%; p<0.001) and 66% (vs 78%; p=0.20), respectively; the corresponding sensitivities were 71% (vs 66%, p=0.007 for non-inferiority), 84% (vs 72%, p=0.002) and 100% (vs 77%, p=0.013) (Table 3).

We also compared our DME-DLS’s c-imDME detection performance with a previously reported, non-generalized, proof-of-concept version of this DLS (Figure 2A). The current DME-DLS had an AUC of 0.88 compared to 0.80 for the proof-of-concept DLS. For the Australia, India, and Thailand datasets individually, the AUCs for the DME-DLS (vs the
proof-of-concept version) were 0.86 (vs 0.73), 0.89 (0.74), 0.96 (0.93), respectively. The performance was consistent when restricted to eyes with mild-to-moderate DR (Figure S2) and when subgrouped by gender (Figure S3).

For the UK dataset, the DME-DLS had an AUC of 0.96 (vs 0.82 for the proof-of-concept DLS), a specificity of 88% and a sensitivity of 89%. At the prespecified high-sensitivity threshold, the DME-DLS had a specificity of 80% (p<0.001 for specificity >50%) and a sensitivity of 100% (p=0.02 for sensitivity >90%) (Figure 2B). The DME-DLS reduced false positives by 80% from 661 to 129, while detecting all 37 eyes with ci-DME on OCT.

Besides ci-DME, we evaluated the DME-DLS against a reference standard of DME (based on retinal thickening) anywhere in the macula (Figure S4). The DME-DLS specificities (vs human experts) for the Australia, India and Thailand datasets were 93% (vs 69%), 87% (vs 55%) and 70% (vs 86%) respectively; the corresponding sensitivities were 56% (vs 60%), 76% (vs 72%) and 90% (vs 65%), respectively.
DME based on intraretinal fluid presence

When assessing DLS performance against the expert graded reference standard in detecting DME defined by IRF, similar trends in performance were noted (Figure 2C-D). In the Australia and India validation datasets, at the pre-specified threshold, the DLS specificities (vs human experts) were 92% (vs 68%) and 67% (vs 44%), respectively; the corresponding sensitivities were 64% (vs 63%) and 89% (vs 71%), respectively. Additionally, the DLS had an AUC of 0.86 and 0.88 compared to 0.74 and 0.77, respectively, for the previously reported proof-of-concept DLS (Figure 2C). There was no significant impact on performance of the DLS when the reference standard was expanded to IRF presence anywhere in the macula (Figure S3D).

For the UK dataset, the DLS had a sensitivity of 56% and a specificity of 95%. At the prespecified high-sensitivity threshold the DLS had a sensitivity of 94% (p=0.032 for sensitivity > 90%) and a specificity of 52% (p<0.001 for specificity > 45%) (Figure 2D). The DLS reduced false positives from 520 to 247, while missing only 9 of 162 eyes with ci-DME on OCT. None of the 9 eyes had ci-DME based on retinal thickening. The DLS had an AUC of 0.88 compared to 0.72 for the proof-of-concept DLS.

Confusion matrices of DLS and expert grades for ci-DME defined by retinal thickening and IRF presence, where available, in all four validation sets is presented in Figure S7.
Evaluation in the context of DLS-based DR screening

Both original and modified versions of the Krause et al. DLS had similar sensitivities for detecting VTDR (p<0.001 for non-inferiority): 93% vs 92%, respectively. The specificity of the modified DLS was significantly higher than the specificity of the original (69% vs 60%, p=0.03). Thus, the modified Krause et al. DLS had 22% lower false positives for VTDR and 8% fewer VTDR referrals, all without loss in sensitivity (Figure 3).

Qualitative analysis

Finally, we qualitatively analyzed randomly selected instances where the DLS did better or worse compared to retina specialists. Figure 4A shows an eye where HE are present near the fovea whereas the corresponding OCT shows an absence of ci-DME (thickening or fluid). This is a canonical example of false positive reduction achieved by the DLS. Figure 4B illustrates an example where the DLS detects a clear case of ci-DME without any HE on the corresponding CFP. Additional examples of false positive and false negative cases can be found in Figures S5 and S6, respectively. Figure 4C-D demonstrate examples of DLS false negative and false positive, respectively. In both cases the visibility in the macular region appears to be compromised, which could be a potential cause for the DLS errors.
Discussion

We present a DME-DLS that interprets CFP to provide a DME status that is significantly more specific than experts grading CFP for HEs, while retaining non-inferior sensitivity. We also achieved significantly higher performance when compared to a previously reported proof-of-concept version of the DME-DLS. Our results generalized across sites in four countries with diverse populations, to different DME definitions, location of DME, and to subgroups of patients with varying severities of DR, including the mild-to-moderate DR patient population for whom the screening tool will be most applicable. Use of a DLS similar to the one we present here holds particular clinical relevance, as diagnosis within screening centers rely heavily upon CFP, which can be less specific and lead to unnecessary referrals.

In the UK, OCT surveillance clinics have recently been established as an intermediary stage to refine referrals between screening and specialist centers for patients with mild DR and suspected DME,\(^6\) as false positive rates can be as high as 86%.\(^6\) This is an important cohort to consider as specialty review is generally not required and rescreening at 12–24 months is recommended in the absence of DME.\(^35\) While OCT surveillance clinics can be more cost effective relative to direct referral from screening to a specialist center,\(^35\) it may not always be logistically feasible, and continues to place significant burden on patients to attend appointments and on expert clinicians to interpret the OCT. Therefore, using the UK validation set, we simulated implementation of the DLS as an ancillary second reader after initial screening has occurred in a cohort of patients that might be referred to the OCT surveillance clinic to identify false positives for DME presence. Our results suggest that the DLS could reduce unwarranted referrals by 80%, while not missing a single positive case.

In resource-constrained healthcare systems such as in Thailand, the Krause et al. DR grading system has been effective at providing real-time results to patients.\(^37\) However,
human-centered evaluation observed concerns from both nurses and patients of a false positive result leading to the additional travel burden for referral follow-up, the cost of missing work, and the emotional strain due to a positive result.57 In addition, false positives place significant burden on already overwhelmed secondary care systems. Similarly, the Australian dataset was from an Aboriginal community clinic, where the DR screening occurs with CFP in many geographically isolated communities without specialist services. By reducing false positives for DME, high costs as well as logistical and cultural barriers are avoided when attempting to coordinate follow-up care. For the India validation set, we simulated the application of integrating this highly-specific DME detection DLS for automated DR screening. In this analysis, we were able to reduce false positive VTDR referrals by 22% and overall VTDR referrals by 8% with no statistically significant loss in sensitivity.

We demonstrate that the DLS can detect DME within 3000 μm of the foveal center and ci-DME affecting the central 500 μm. Anti-vascular endothelial growth factor drugs and steroid implants have demonstrated efficacy in improving visual acuity in patients with ci-DME38 and delaying treatment can lead to suboptimal visual gains.39 Nci-DME is also of significance as it may be a precursor to visually significant ci-DME and should be monitored for risk of progression.40 In these patients, focal laser treatment may be indicated to reduce leakage and stabilize visual acuity.41,42 Furthermore, our DLS can detect DME defined by thickening or IRF presence. Although these definitions are correlated, we found that only 20–66% of eyes with ci-DME, defined by either thickening or IRF, demonstrated both. Our DLS could be used to triage patients—prioritizing those who meet one or both definitions.

The performance of the DLS was robust when assessing different degrees of DR severity. DME can be found in eyes at any DR severity level and can run an independent course to DR.43 In patients with mild or moderate DR, there is a risk of missing DME: Wang et al. found over 1 in 4 cases were missed when using CFP labels compared to an OCT reference standard.5 Exploratory analysis revealed our DLS to also have a higher sensitivity. Figure 4B
and Figure S6 illustrate instances with no hard exudates at the macula but with ci-DME on OCT that was correctly detected by the DLS. Such cases would have been missed if relying upon conventional CFP grading. This could be studied more rigorously with larger and prospectively planned datasets in the future.

Prior work from our group has shown that the features around the fovea are most relevant for the proof-of-concept version of our DME-DLS.16 Explainability techniques such as heat maps have been applied, highlighting areas highly correlated with the DLS prediction.44

Compared to the Krause et al. DLS, which focused on HE locations in the whole 45 degree CFP, the DME-DLS primarily focused on the fovea, leading to superior performance.

Another explainability technique in prior work used CycleGAN,45 a type of Generative Adversarial Network that transforms negative cases into positive cases and vice versa, to visualize the changes in CFP features that are necessary for the transformation. This approach observed that transformations from DME to no-DME (or vice versa) involved the removal (or addition) of hard exudates and a darkening (or brightening) of the foveal region.44 Consistent with these findings, from qualitative analysis, we found that a proportion of incorrect predictions for the current DLS may be attributed to CFP artifacts such as poor contrast or macular shadows that might result from suboptimal pupil dilation (Figure 4C–D).

In the future, improved interpretability of the DLS could provide an opportunity for clinicians to learn from and better diagnose DME directly from CFPs.

In terms of aggregate performance (Australia, India, and Thailand datasets), the DLS met the primary endpoint of superior specificity and non-inferior sensitivity using a pre-specified operating point. However, we note that on a per-dataset level, the ROC curves suggest that the operating points could be further calibrated on a per-site basis to achieve a better trade-off between sensitivity and specificity that accounts for local preferences and resource constraints. Applicable trade-offs are likely to be dependent on local resource constraints and the desired sensitivity. The shape of the ROC curve also varies between the sites, which
is likely due to differences in the population distribution. Future work could explore selecting the ideal operating point for a given setting.

To be clinically applicable and robust, we developed and validated the DLS on images acquired from multiple manufacturers using gender and device-specific thresholds. However, due to site-specific differences in OCT devices and scan protocols, the reference standard for IRF in the secondary analyses differed across datasets in terms of the number of B-scans and area imaged (fovea vs full volumes). Further studies may help understand how these changes in reference standard impact final performance. Furthermore, future work could explore the robustness of the DLS when compared to various thickness thresholds. For example, in the UK, NICE guidelines require point thickness of ≥400 µm in the central subfield to start treatment. A DLS that can identify different levels of ci-DME could more effectively prioritize patients that would be eligible for treatment.

Conclusion

This study demonstrates that the DME-DLS can generalize to multiple international populations with an accuracy exceeding both experts and a previous proof-of-concept version of the system. As the prevalence of diabetes is increasing, resulting in more individuals requiring DR screening, DLS systems are likely to play a significant role in assisting clinicians to ensure timely grading and referrals with both high sensitivity and specificity. We believe our DLS has most clinical applicability in resource-constrained settings to reduce false positive referrals from screening. Another advantage of our DLS is the ability to triage patients depending on the type of DME, such as ci-DME and nci-DME, as well as thickness and fluid-based definitions. Future work should explore the clinical utility of the DME-DLS through prospective evaluation.
References

34. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics

Figure 1. Study design. A: The deep learning system (DLS) was trained to take color fundus photography (CFP) as input to predict optical coherence tomography (OCT)-derived diabetic macular edema (DME) presence, using datasets from Thailand, the UK and the US. B: The DLS was evaluated for non-inferiority of sensitivity and superiority of specificity, and compared to experts on datasets from Australia, India, and Thailand. The DLS was separately evaluated on a dataset from the UK. Given the difference in patient population (DR screening in Australia, India and Thailand, vs. pre-screened diabetes patients with a higher likelihood of DME in the UK), these datasets were separately analyzed. Both the DLS and expert graders saw only the CFP. The reference standard was based on measurements from OCT.

Figure 2. Receiver operating characteristic curves of the DME-DLS, a previously reported proof-of-concept version of the DLS (not generalized), and experts for detecting ci-DME. The threshold for the DLS was pre-specified. The experts graded the presence of hard exudates within 1500 μm. A) Comparison of performance of both DLSs and experts in a combined cohort of the screening datasets from Australia, India and Thailand consisting of eyes with mild or worse DR. ci-DME was defined by central subfield thickness exceeding OCT device specific threshold. B) Comparison of performance of both DLSs in the separate UK validation dataset consisting of patients referred from screening for DME. C) Comparison of performance of both DLSs and experts in the Australia and India datasets on eyes with mild or worse DR. ci-DME was defined by the presence of intraretinal fluid in the central subfield. D) Comparison of performance of both DLSs in the UK validation dataset. Intraretinal fluid presence grades were not available for the Thailand dataset.

Figure 3: Effect of replacing the DME component of the Krause et al. DLS with the DME-DLS presented in this paper on the India dataset. The Krause et al. DLS (left) and the modified Krause et al. DLS (right) have identical rates of severe+DR compared with the
adjudicated ground truth (center). Yet, the dark red flow (left) shows the substantially larger number of DME categorizations made by the original Krause et al. DLS compared to the brighter red flow (right) for the modified Krause et al. DLS (i.e. reduced number of false positives by the modified DLS); the sensitivity remains unchanged (as shown by the green bar on the top).

Figure 4. Selected paired CFPs and OCTs for DLS success and failure, as compared with retina specialists (RS) grading CFPs. A) Hard exudates (HE) within 1500 μm, no thickening or fluid on the OCT - detected correctly by the DLS. B) No HE within 1500 μm, thickening and fluid on the OCT - detected correctly by the DLS. C) HE within 1500 μm, thickening and fluid on the OCT - missed by the DLS. D) No HE within 1500 μm, no thickening or fluid on the OCT - false positive reported by the DLS.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Australia</th>
<th>India</th>
<th>Thailand</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution</td>
<td>Derbarl Yerrigan Health Service, Perth</td>
<td>Sankara Nethralaya, Chennai</td>
<td>Rajavithi Hospital, Bangkok</td>
<td>Moorfields Eye Hospital, London</td>
</tr>
<tr>
<td>Collection dates</td>
<td>July 2013 to October 2020</td>
<td>October 2019 to February 2020</td>
<td>February 2020 to July 2020</td>
<td>August 2014 to September 2018</td>
</tr>
<tr>
<td>Population</td>
<td>Diabetic patients presenting for DR screening</td>
<td>Diabetic patients visiting outpatient ophthalmology clinic</td>
<td>Diabetic patients presenting for DR screening</td>
<td>Diabetic patients randomly selected from a cohort referred from the DR screening program for at least one eye with mild DR and maculopathy</td>
</tr>
<tr>
<td>Patients</td>
<td>866</td>
<td>168</td>
<td>548</td>
<td>537</td>
</tr>
<tr>
<td>Age in years, mean (SD)</td>
<td>54.9 (15.0) n=866</td>
<td>60.0 (8.6) n=168</td>
<td>57.6 (11.2) n=548</td>
<td>55.0 (15.1) n=537</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>52.4% n=454</td>
<td>31.5% n=53</td>
<td>62.2% n=341</td>
<td>41.7% n=224</td>
</tr>
<tr>
<td>Eyes (one image per eye)</td>
<td>1692</td>
<td>298</td>
<td>1070</td>
<td>698</td>
</tr>
<tr>
<td>Eyes used in analysis after excluding ungradable images, %</td>
<td>90.4% n=1530</td>
<td>98.0% n=292</td>
<td>98.5% n=1054</td>
<td>100.0% n=698</td>
</tr>
<tr>
<td>No DR, %</td>
<td>75.6% n=1157</td>
<td>44.2% n=129</td>
<td>87.0% n=917</td>
<td>0.0% n=0</td>
</tr>
<tr>
<td>Mild DR, %</td>
<td>3.2% n=49</td>
<td>3.4% n=10</td>
<td>4.0% n=42</td>
<td>100.0% n=698</td>
</tr>
<tr>
<td>Moderate DR, %</td>
<td>16.5% n=253</td>
<td>27.7% n=81</td>
<td>6.9% n=73</td>
<td>0.0% n=0</td>
</tr>
<tr>
<td>Severe DR, %</td>
<td>1.0% n=15</td>
<td>3.1% n=9</td>
<td>1.3% n=14</td>
<td>0.0% n=0</td>
</tr>
<tr>
<td>Proliferative DR, %</td>
<td>3.7% n=56</td>
<td>21.6% n=63</td>
<td>0.8% n=8</td>
<td>0.0% n=0</td>
</tr>
<tr>
<td>Central subfield thickness in μm, mean (SD)</td>
<td>238.6 (54.5) n=1530</td>
<td>297.5 (118.8) n=291</td>
<td>270.9 (56.0) n=1054</td>
<td>233.0 (42.5) n=698</td>
</tr>
<tr>
<td>ci-DME positive (central subfield thickness ≥ threshold), %</td>
<td>3.8% n=58</td>
<td>21.0% n=61</td>
<td>2.5% n=26</td>
<td>5.3% n=37</td>
</tr>
<tr>
<td>ci-DME positive (IRF present), %</td>
<td>11.1% n=166</td>
<td>25.0% n=72</td>
<td>Not available</td>
<td>23.8% n=162</td>
</tr>
<tr>
<td>ci-DME positive (central retinal thickening and IRF present), %</td>
<td>3.1% n=46</td>
<td>18.4% n=53</td>
<td>Not available</td>
<td>4.8% n=33</td>
</tr>
<tr>
<td>DME positive (retinal thickening ≥ threshold)</td>
<td>13.1% n=200</td>
<td>39.0% n=114</td>
<td>4.6% n=49</td>
<td>Not available</td>
</tr>
</tbody>
</table>
Table 1. Baseline characteristics of the validation datasets from multiple institutions in Australia, India, Thailand, and the United Kingdom. Abbreviations: ci-DME: center-involving diabetic macular edema; DR: diabetic retinopathy; SD: standard deviation; IRF: intraretinal fluid.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Imaging device(s) used</th>
<th>Ground truth for primary analysis (ci-DME based on CST)</th>
<th>Ground truth for secondary analysis</th>
<th>Expert DR & DME grades from CFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>CFP + OCT: 3D OCT-1 Maestro (Topcon Corp., Tokyo, Japan)</td>
<td>Topcon software</td>
<td>1. Thickness-based ci-DME and nci-DME from Topcon software 2. Majority grade by 3 ophthalmologists for IRF-based ci-DME and DME using the full OCT volume</td>
<td>Single grades by a pool of 7 retina specialists</td>
</tr>
<tr>
<td>India</td>
<td>CFP: NFC 700 (Crystalvue, Taoyuan City, Taiwan) or NW400 (Topcon Corp., Tokyo, Japan) OCT: Cirrus HD-OCT 500 (Carl Zeiss Meditec, Dublin, CA)</td>
<td>Zeiss software</td>
<td>1. Thickness-based ci-DME and nci-DME from Zeiss software 2. Adjudicated grade by 1 retina specialist and 1 ophthalmologist for IRF-based ci-DME using the OCT report, with the central B-Scan containing the fovea</td>
<td>3-way adjudicated grades by a pool of 18 experts (13 retina specialists, 2 ophthalmologists, 3 optometrists)</td>
</tr>
<tr>
<td>Thailand</td>
<td>CFP: VX-10 (Kowa, Tokyo, Japan) OCT: Spectralis (Heidelberg Engineering, Heidelberg, Germany)</td>
<td>Heidelberg software</td>
<td>1. Thickness-based ci-DME and nci-DME from Heidelberg software 2. IRF grades not available</td>
<td>Single grades by a pool of 5 retina specialists</td>
</tr>
<tr>
<td>UK</td>
<td>CFP + OCT: 3D OCT-2000 (Topcon Corp., Tokyo, Japan)</td>
<td>Topcon software</td>
<td>1. Thickness-based ci-DME from Topcon software after manual recentering of ETDRS grid to fovea (nci-DME measurements not available) 2. Majority grade by 3 ophthalmologists for IRF-based ci-DME and DME using the full OCT volume</td>
<td>Screening grade, derived by a 3-level grading system using certified retinal graders in the diabetic eye screening program</td>
</tr>
</tbody>
</table>

Table 2. Sources of ground truths and expert grades for comparison in the validation datasets. CFP: color fundus photograph; ci-DME: center-involving diabetic macular edema; CST: central subfield thickness; DR: diabetic retinopathy; DME: diabetic macular edema; ETDRS, Early Treatment Diabetic Retinopathy Study; IRF, Intraretinal Fluid; OCT: optical coherence tomography.
<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>Australia</th>
<th>India</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of images</td>
<td>673</td>
<td>373</td>
<td>163</td>
<td>137</td>
</tr>
<tr>
<td>Number of patients</td>
<td>457</td>
<td>247</td>
<td>106</td>
<td>104</td>
</tr>
<tr>
<td>Number of images positive for ci-DME</td>
<td>145</td>
<td>58</td>
<td>61</td>
<td>26</td>
</tr>
<tr>
<td>Model specificity</td>
<td>80%</td>
<td>86%</td>
<td>77%</td>
<td>66%</td>
</tr>
<tr>
<td>Grader specificity</td>
<td>59%</td>
<td>57%</td>
<td>44%</td>
<td>78%</td>
</tr>
<tr>
<td>95% CI for difference</td>
<td>[5%, 36%]</td>
<td>[3%, 54%]</td>
<td>[22%, 43%]</td>
<td>[-32%, 7%]</td>
</tr>
<tr>
<td>p-value for difference</td>
<td>0.008</td>
<td>0.030</td>
<td><0.001</td>
<td>0.201</td>
</tr>
<tr>
<td>Model sensitivity</td>
<td>81%</td>
<td>71%</td>
<td>84%</td>
<td>100%</td>
</tr>
<tr>
<td>Grader sensitivity</td>
<td>70%</td>
<td>66%</td>
<td>72%</td>
<td>77%</td>
</tr>
<tr>
<td>p-value for non-inferiority</td>
<td><0.001</td>
<td>0.007</td>
<td>0.002</td>
<td>0.013</td>
</tr>
<tr>
<td>95% CI for difference</td>
<td>[2%, 20%]</td>
<td>[-7%, 17%]</td>
<td>[-4%, 26%]</td>
<td>[-6%, 52%]</td>
</tr>
<tr>
<td>p-value for difference</td>
<td>0.014</td>
<td>0.402</td>
<td>0.127</td>
<td>0.121</td>
</tr>
</tbody>
</table>

Table 3. DLS sensitivity and specificity compared to expert grades for detecting ci-DME in eyes with at least mild DR. The experts graded for the presence of hard exudates within 1500 μm. ci-DME was defined by central subfield thickness exceeding OCT device specific threshold. Abbreviations: ci-DME, center-involving Diabetic Macular Edema; CI, Confidence Interval.
A

Typical approach:
Develop a DLS with maculopathy (hard exudates) visible on color fundus photographs

Model inputs:
- DME: present / absent

Model training
- “Typical” DLS

Our approach:
Develop a DLS with OCT-derived thickness and fluid presence labels

1. Expert annotation

2. Large-scale automated annotation

Our DLS

B

DLS development datasets:
- Thailand, UK and US
- Australia, India, Thailand and UK

DLS validation datasets:

Comparison: Human experts grading for hard exudates within 1500 microns on color fundus photographs

Image for DLS input and expert review:
- Color fundus photograph

Reference standard:
- CST ≥ 300 microns from optical coherence tomography
A

Age: 44
Sex: Male
CST: 179 μm
IRF: No
ci-DME: No
RS: Positive for maculopathy / HE
DLS: Negative for ci-DME

B

Age: 83
Sex: Female
CST: 353 μm
IRF: Yes
ci-DME: Yes
RS: Negative for maculopathy / HE
DLS: Positive for ci-DME

C

Age: 63
Sex: Male
CST: 361 μm
IRF: Yes
ci-DME: Yes
RS: Positive for maculopathy / HE
DLS: Negative for ci-DME

D

Age: 41
Sex: Female
CST: 267 μm
IRF: No
ci-DME: No
RS: Negative for maculopathy / HE
DLS: Positive for ci-DME
Precis

A deep learning system was trained to predict OCT-derived diabetic macular edema grades from color fundus photographs, and evaluated on international datasets. It achieved a superior specificity and comparable sensitivity to experts grading photographs.