Incidence and Risk Factors for Macular Atrophy in Acquired Vitelliform Lesions

Published:August 11, 2021DOI:


      To study the time course to macular atrophy (MA) and associated risk factors in eyes with acquired vitelliform lesions (AVLs) as they vary between patients and between eyes of an individual.


      Single-center, retrospective, observational cohort study.


      Consecutive patients registered between January 2009 and January 2014 with first diagnosis of AVL confirmed by multimodal imaging were included. Eyes with baseline MA or choroidal neovascularization were excluded.


      Patient demographics were collected. Serial OCT scans and fundus autofluorescence (FAF) scans were graded and analyzed. Turnbull’s estimator was used, and time was censored at 5 years. Multivariable Weibull parametric proportional hazard models were used to assess the association of risk factors with MA after adjustment for age and gender. Hazard ratios (HRs) are reported with 95% confidence interval (CI).

      Main Outcome Measures

      Time to the first OCT evidence of MA stratified by presenting visual acuity (VA) and AVL lesion subtypes. Secondary outcome included risk factors for incident MA.


      A total of 237 eyes (132 patients) met the inclusion criteria. Incident MA was detected in 52 of 237 eyes (21.9%) by 5 years. Stratified by baseline VA, 40.3% of eyes with VA ≤70 letters developed atrophy within 5 years of first diagnosis in contrast to 10.3% eyes with VA >70 letters (P < 0.001). Based on lesion type only, 12.9% of eyes with vitelliform lesion at baseline developed MA versus 39.8% and 44.2% of eyes with pseudohypopyon or vitelliruptive lesion type, respectively. In adjusted analysis, baseline factors associated with increased risk of MA included VA ≤70 letters (hazard ratio [HR], 5.54; 95% confidence interval [CI], 2.30–13.34), base width (HR, 1.22; 95% CI, 1.16–1.28), maximum height (HR, 2.61; 95% CI, 1.82–3.74), presence of subretinal drusenoid deposits (SDDs) (HR, 2.83; 95% CI, 1.34–5.96), and disrupted external limiting membrane (ELM) (HR, 2.81; 95% CI, 1.34–5.86).


      Baseline VA of ≤70 letters (Snellen ≤20/40) and pseudohypopyon or vitelliruptive lesion type attribute the highest risk for MA. Other prognostic indicators for MA include baseline presence of SDD, disrupted ELM, and larger lesion area.


      Abbreviations and Acronyms:

      AMD (age-related macular degeneration), AOFVD (adult-onset foveomacular dystrophy), AVL (acquired vitelliform lesion), CI (confidence interval), CNV (choroidal neovascularization), ELM (external limiting membrane), ETDRS (Early Treatment Diabetic Retinopathy Study), EZ (ellipsoid zone), FAF (fundus autofluorescence), HR (hazard ratio), IQR (interquartile range), MA (macular atrophy), RPE (retinal pigment epithelium), SDD (subretinal drusenoid deposit), SD-OCT (spectral-domain OCT), VA (visual acuity)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Ophthalmology Retina
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lima L.H.
        • Laud K.
        • Freund K.B.
        • et al.
        Acquired vitelliform lesion associated with large drusen.
        Retina. 2012; 32: 647-651
        • Freund K.B.
        • Laud K.
        • Lima L.H.
        • et al.
        Acquired vitelliform lesions: correlation of clinical findings and multiple imaging analyses.
        Retina. 2011; 31: 13-25
        • Saito M.
        • Iida T.
        • Freund K.B.
        • et al.
        Clinical findings of acquired vitelliform lesions associated with retinal pigment epithelial detachments.
        Am J Ophthalmol. 2014; 157: 355-365.e2
        • Gonzales C.R.
        • Lin A.P.
        • Engstrom R.E.
        • Kreiger A.E.
        Bilateral vitelliform maculopathy and deferoxamine toxicity.
        Retina. 2004; 24: 464-467
        • Gass J.D.
        A clinicopathologic study of a peculiar foveomacular dystrophy.
        Trans Am Ophthalmol Soc. 1974; 72: 139-156
        • Arnold J.J.
        • Sarks J.P.
        • Killingsworth M.C.
        • et al.
        Adult vitelliform macular degeneration: a clinicopathological study.
        Eye (Lond). 2003; 17: 717-726
        • Chen K.C.
        • Jung J.J.
        • Curcio C.A.
        • et al.
        Intraretinal hyperreflective foci in acquired vitelliform lesions of the macula: clinical and histologic study.
        Am J Ophthalmol. 2016; 164: 89-98
        • Chowers I.
        • Tiosano L.
        • Audo I.
        • et al.
        Adult-onset foveomacular vitelliform dystrophy: a fresh perspective.
        Prog Retin Eye Res. 2015; 47: 64-85
        • Balaratnasingam C.
        • Hoang Q.V.
        • Inoue M.
        • et al.
        Clinical characteristics, choroidal neovascularization, and predictors of visual outcomes in acquired vitelliform lesions.
        Am J Ophthalmol. 2016; 172: 28-38
        • Gregori N.Z.
        • Feuer W.
        • Rosenfeld P.J.
        Novel method for analyzing Snellen visual acuity measurements.
        Retina. 2010; 30: 1046-1050
        • Parodi M.B.
        • Iacono P.
        • Pedio M.
        • et al.
        Autofluorescence in adult-onset foveomacular vitelliform dystrophy.
        Retina. 2008; 28: 801-807
        • Zweifel S.A.
        • Spaide R.F.
        • Yannuzzi L.A.
        Acquired vitelliform detachment in patients with subretinal drusenoid deposits (reticular pseudodrusen).
        Retina. 2011; 31: 229-234
        • Ferris F.L.
        • Wilkinson C.P.
        • Bird A.
        • et al.
        • 3rd
        Clinical classification of age-related macular degeneration.
        Ophthalmology. 2013; 120: 844-851
        • Wellner J.A.
        • Zhan Y.
        A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data.
        J Am Stat Assoc. 1997; 92: 945-959
        • Shaw MPFaPA.
        Exact and asymptotic weighted logrank tests for interval censored data: The {interval}{R} Package.
        J Stat Softw. 2010; 36: 1-34
        • Gentleman R.
        • Vandal A.
        Icens: NPMLE for censored and truncated data.
        R package version. 2010; 1
        • Turnbull B.W.
        The empirical distribution function with arbitrarily grouped, censored and truncated data.
        J Roy Stat Soc Series B. 1976; 38: 290-295
        • Epstein G.A.
        • Rabb M.F.
        Adult vitelliform macular degeneration: diagnosis and natural history.
        Br J Ophthalmol. 1980; 64: 733-740
        • Fishman G.A.
        • Trimble S.
        • Rabb M.F.
        • Fishman M.
        Pseudovitelliform macular degeneration.
        Arch Ophthalmol. 1977; 95: 73-76
        • Dubovy S.R.
        • Hairston R.J.
        • Schatz H.
        • et al.
        Adult-onset foveomacular pigment epithelial dystrophy: clinicopathologic correlation of three cases.
        Retina. 2000; 20: 638-649
        • Fleckenstein M.
        • Mitchell P.
        • Freund K.B.
        • et al.
        The progression of geographic atrophy secondary to age-related macular degeneration.
        Ophthalmology. 2018; 125: 369-390
        • Barbazetto I.A.
        • Yannuzzi N.A.
        • Klais C.M.
        • et al.
        Pseudo-vitelliform macular detachment and cuticular drusen: exclusion of 6 candidate genes.
        Ophthalmic Genet. 2007; 28: 192-197
        • Jaouni T.
        • Averbukh E.
        • Burstyn-Cohen T.
        • et al.
        Association of pattern dystrophy with an HTRA1 single-nucleotide polymorphism.
        Arch Ophthalmol. 2012; 130: 987-991
        • Glacet-Bernard A.
        • Soubrane G.
        • Coscas G.
        [Macular vitelliform degeneration in adults. Retrospective study of a series of 85 patients].
        J Fr Ophtalmol. 1990; 13: 407-420
        • Greaves A.H.
        • Sarks J.P.
        • Sarks S.H.
        Adult vitelliform macular degeneration: a clinical spectrum.
        Aust N Z J Ophthalmol. 1990; 18: 171-178
        • Spaide R.
        Autofluorescence from the outer retina and subretinal space: hypothesis and review.
        Retina. 2008; 28: 5-35
        • Wang J.S.
        • Kefalov V.J.
        The cone-specific visual cycle.
        Prog Retin Eye Res. 2011; 30: 115-128
        • Tang P.H.
        • Kono M.
        • Koutalos Y.
        • et al.
        New insights into retinoid metabolism and cycling within the retina.
        Prog Retin Eye Res. 2013; 32: 48-63
        • Querques G.
        • Forte R.
        • Querques L.
        • et al.
        Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis.
        Am J Ophthalmol. 2011; 152: 304-313
        • Wilde C.
        • Awad M.
        • Giannouladis K.
        • et al.
        Natural course of adult-onset vitelliform lesions in eyes with and without comorbid subretinal drusenoid deposits.
        Int Ophthalmol. 2020; 40: 1501-1508
        • Wellner J.A.
        • Zhan Y.
        A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data.
        J Am Stat Assoc. 1997; 92: 945-959
        • Yang X.
        Analyzing interval-censored survival-time data in Stata.
        2017 Stata Conference, 2017