A Novel Method to Detect and Monitor Retinal Vasculitis Using Swept-Source OCT Angiography

Published:February 18, 2021DOI:


      To introduce a novel method for assessment of retinal vasculitis using swept-source OCT angiography (SS-OCTA).


      Retrospective case series.


      Patients with retinal vasculitis.


      The subjects were identified among the clinic population and imaged with 12 × 12-mm SS-OCTA scans centered on the fovea. A custom retina segmentation superimposed the color retinal thickness map on a modified en face flow scan. Findings from en face flow scans were correlated with localized perivascular retinal thickening on B-scans. Results from SS-OCTA were compared with fluorescein angiography (FA) to examine the proportion of perivascular thickening to retinal vascular leakage or staining.


      Twenty-one patients with retinal vasculitis underwent same-day FA and SS-OCTA. Visible retinal vascular leakage/staining on FA corresponded to increased perivascular retinal thickness on SS-OCTA in 17 patients. Five patients had a second examination with same-day FA and SS-OCTA after treatment of the vasculitis. Three of those 5 patients showed improved retinal vascular leakage/staining on post-treatment FA and decreased perivascular retinal thickness on SS-OCTA scans.


      Swept-source OCT angiography detects structural retinal thickening secondary to inflammatory retinal vascular leakage. Further studies are required to confirm whether SS-OCTA may serve as a semiquantitative alternative to FA to diagnose and monitor the response to treatment in patients with retinal vasculitis.


      Abbreviations and Acronyms:

      BSCR (birdshot chorioretinopathy), FA (fluorescein angiography), ILM (internal limiting membrane), OCTA (OCT angiography), SS-OCTA (swept-source OCTA)
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology Retina
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Levy-Clarke G.A.
        • Nussenblatt R.
        Retinal vasculitis.
        Int Ophthalmol Clin. 2005; 45: 99-113
        • Rodriguez A.
        • Calonge M.
        • Pedroza-Seres M.
        • et al.
        Referral patterns of uveitis in a tertiary eye care center.
        Arch Ophthalmol. 1996; 114: 593-599
        • Rosenbaum J.T.
        • Sibley C.H.
        • Lin P.
        Retinal vasculitis.
        Curr Opin Rheumatol. 2016; 28: 228-235
        • Arnold A.C.
        • Usaf M.
        • Pepose J.S.
        • et al.
        Retinal periphlebitis and retinitis in multiple sclerosis. I. Pathologic characteristics.
        Ophthalmology. 1984; 91: 255-262
        • Gass J.D.
        • Olson C.L.
        Sarcoidosis with optic nerve and retinal involvement.
        Arch Ophthalmol. 1976; 94: 945-950
        • Pederson J.E.
        • Kenyon K.R.
        • Green W.R.
        • Maumenee A.E.
        Pathology of pars planitis.
        Am J Ophthalmol. 1978; 86: 762-774
        • Gaudio P.A.
        • Kaye D.B.
        • Crawford J.B.
        Histopathology of birdshot retinochoroidopathy.
        Br J Ophthalmol. 2002; 86: 1439-1441
        • El-Asrar A.M.
        • Herbort C.P.
        • Tabbara K.F.
        A clinical approach to the diagnosis of retinal vasculitis.
        Int Ophthalmol. 2010; 30: 149-173
        • Khairallah M.
        • Abroug N.
        • Khochtali S.
        • et al.
        Optical coherence tomography angiography in patients with Behçet uveitis.
        Retina. 2017; 37: 1678-1691
        • Yannuzzi L.A.
        • Rohrer K.T.
        • Tindel L.J.
        • et al.
        Fluorescein angiography complication survey.
        Ophthalmology. 1986; 93: 611-617
        • Spaide R.F.
        • Klancnik J.M.
        • Cooney M.J.
        Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.
        JAMA Ophthalmol. 2015; 133: 45-50
        • Pichi F.
        • Sarraf D.
        • Morara M.
        • et al.
        Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis.
        J Ophthalmic Inflamm Infect. 2017; 7: 20-32
        • Kashani A.H.
        • Chen C.L.
        • Gahm J.K.
        • et al.
        Optical coherence tomography angiography: a comprehensive review of current methods and clinical application.
        Prog Retin Eye Res. 2017; 60: 66-100
        • Kim A.Y.
        • Rodger D.C.
        • Shahidzadeh A.
        • et al.
        Quantifying retinal microvascular changes in Uveitis using spectral-domain optical coherence tomography angiography.
        Am J Ophthalmol. 2016; 171: 101-112
        • Jia Y.
        • Bailey S.T.
        • Wilson D.J.
        • et al.
        Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration.
        Ophthalmology. 2014; 121: 1435-1444
        • Cerquaglia A.
        • Iaccheri B.
        • Fiore T.
        • et al.
        New insights on ocular sarcoidosis: an optical coherence tomography angiography study.
        Ocul Immunol Inflamm. 2019; 27: 1057-1066
        • Abucham-Neto J.Z.
        • Torricelli A.A.M.
        • Lui A.C.F.
        • et al.
        Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis.
        Int J Retina Vitreous. 2018; 4: 15
        • Marchese A.
        • Miserocchi E.
        • Modorati G.
        • et al.
        Widefield OCT angiography of idiopathic retinal vasculitis, aneurysms, and neuroretinitis.
        Ophthalmol Retina. 2017; 1: 567-569
        • Tian M.
        • Tappeiner C.
        • Zinkernagel M.S.
        • et al.
        Evaluation of vascular changes in intermediate uveitis and retinal vasculitis using swept-source wide-field optical coherence tomography angiography.
        Br J Ophthalmol. 2019; 103: 1289-1295
        • Huang Y.
        • Qinqin Q.
        • Thorell M.R.
        • et al.
        Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms.
        Ophthalmic Surg Lasers Imaging Retina. 2014; 45: 382-389
        • Moult E.
        • Choi W.
        • Waheed N.K.
        • et al.
        Ultrahigh-speed swept-source OCT angiography in exudative AMD.
        Ophthalmic Surg Lasers Imaging Retina. 2014; 45: 496-505
        • Jabs D.A.
        • Nusenblatt R.B.
        • Rosenbaum J.T.
        Standardization of Uveitis nomenclature (SUN) working group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop.
        Am J Ophthalmol. 2005; 140: 509-516
        • Russell J.F.
        • Flynn Jr., H.W.
        • Sridhar J.
        • et al.
        Distribution of diabetic neovascularization on ultra- widefield fluorescein angiography and on simulated widefield OCT angiography.
        Am J Ophthalmol. 2019; 207: 110-120
        • Knickelbein J.E.
        • Tucker W.
        • Kodati S.
        • et al.
        Non-invasive method of monitoring retinal vasculitis in patients with birdshot chorioretinopathy using optical coherence tomography.
        Br J Ophthalmol. 2018; 102: 815-820
        • Errera M.H.
        • Coisy S.
        • Fardeau C.
        • et al.
        Retinal vasculitis imaging by adaptive optics.
        Ophthalmology. 2014; 121: 1311-1312