Advertisement

Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging

Published:February 06, 2019DOI:https://doi.org/10.1016/j.oret.2019.01.024

      Purpose

      To determine the possible correlation between the annual enlargement rates (ERs) of geographic atrophy (GA) with the percentage and size of the choriocapillaris (CC) flow deficits (FDs) surrounding GA, measured with swept-source OCT angiography (SS-OCTA) images.

      Design

      Prospective, observational case series.

      Participants

      Patients with GA secondary to nonexudative AMD.

      Methods

      Patients were imaged with a 100-kHz SS-OCTA instrument (PLEX Elite 9000, Carl Zeiss Meditec, Dublin, CA) using a 6×6-mm field of view scan pattern. The GA area measurements were obtained from en face SS-OCT sub-retinal pigment epithelium (RPE) slab images. Visualization of the CC and quantification of FDs were performed using a previously published validated algorithm based on a 20-μm thickness slab with the inner boundary located beneath Bruch’s membrane. The percentage of CC FDs (FD%) and the average FD area measurements were calculated in different regions around the GA.

      Main Outcome Measures

      The correlation between the CC FDs and the ERs of GA.

      Results

      Twenty-two eyes from 15 patients were eligible for the analysis. The annual square root ERs for GA ranged from 0.07 to 0.75 mm/year. The CC FD% and average FD area measurements were highly correlated with each other (P < 0.001), with the highest FD values found in the region closest to the margin of GA. The ERs correlated best with the average CC FD area measurements in the total scan area minus the area of GA (Pearson r = 0.747; P < 0.001) than those in the regions immediately surrounding the GA (r = 0.544; P = 0.009).

      Conclusions

      Contrary to expectations, the global CC FD measurements had a better correlation with the ERs of GA than those in the regions immediately around the GA. The most likely explanation for this outcome is that normal age-related increases in FDs within the central macula confound the correlations between the ERs of GA and FDs, whereas the regions furthest away from the margins of GA are less affected by normal age-related changes and reflect FD alterations related to AMD severity.

      Abbreviations and Acronyms:

      AMD (age-related macular degeneration), CC (choriocapillaris), cRORA (complete retinal pigment epithelium and outer retinal atrophy), ER (enlargement rate), FD (flow deficit), GA (geographic atrophy), RPD (reticular pseudodrusen), RPE (retinal pigment epithelium), SD (standard deviation), SDD (subretinal drusenoid deposit), SD-OCTA (spectral domain OCT angiography), SS-OCTA (swept-source OCT angiography)
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology Retina
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sadda S.R.
        • Guymer R.
        • Holz F.G.
        • et al.
        Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of Atrophy Report 3.
        Ophthalmology. 2018; 125: 537-548
        • Wu Z.
        • Luu C.D.
        • Ayton L.N.
        • et al.
        Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration.
        Ophthalmology. 2014; 121: 2415-2422
        • Holz F.G.
        • Sadda S.R.
        • Staurenghi G.
        • et al.
        Imaging protocols in clinical studies in advanced age-related macular degeneration: recommendations from Classification of Atrophy Consensus Meetings.
        Ophthalmology. 2017; 124: 464-478
        • Bearelly S.
        • Chau F.Y.
        • Koreishi A.
        • et al.
        Spectral domain optical coherence tomography imaging of geographic atrophy margins.
        Ophthalmology. 2009; 116: 1762-1769
        • Fleckenstein M.
        • Schmitz-Valckenberg S.
        • Adrion C.
        • et al.
        Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2010; 51: 3846-3852
        • Nunes R.P.
        • Gregori G.
        • Yehoshua Z.
        • et al.
        Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina.
        Ophthalmic Surg Lasers Imaging Retina. 2013; 44: 344-359
        • Wolf-Schnurrbusch U.E.
        • Enzmann V.
        • Brinkmann C.K.
        • Wolf S.
        Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination.
        Invest Ophthalmol Vis Sci. 2008; 49: 3095-3099
        • Yehoshua Z.
        • Garcia Filho C.A.
        • Penha F.M.
        • et al.
        Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image.
        Ophthalmic Surg Lasers Imaging Retina. 2013; 44: 127-132
        • Yehoshua Z.
        • Rosenfeld P.J.
        • Gregori G.
        • et al.
        Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography.
        Ophthalmology. 2011; 118: 679-686
        • Thulliez M.
        • Motulsky E.
        • Feuer W.
        • et al.
        En face imaging of geographic atrophy using different swept-source optical coherence tomography scan patterns.
        Ophthalmol Retina. 2019; 2: 122-132
        • Niu S.
        • de Sisternes L.
        • Chen Q.
        • et al.
        Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers.
        Ophthalmology. 2016; 123: 1737-1750
        • Choi W.
        • Mohler K.J.
        • Potsaid B.
        • et al.
        Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography.
        PLoS One. 2013; 8: e81499
        • Choi W.
        • Moult E.M.
        • Waheed N.K.
        • et al.
        Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy.
        Ophthalmology. 2015; 122: 2532-2544
        • Choi W.
        • Waheed N.K.
        • Moult E.M.
        • et al.
        Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy.
        Retina. 2017; 37: 11-21
        • Kurokawa K.
        • Liu Z.
        • Miller D.T.
        Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited].
        Biomed Opt Express. 2017; 8: 1803-1822
        • Moreira-Neto C.A.
        • Moult E.M.
        • Fujimoto J.G.
        • et al.
        Choriocapillaris loss in advanced age-related macular degeneration.
        J Ophthalmol. 2018; 2018: 8125267
        • Moult E.
        • Choi W.
        • Waheed N.K.
        • et al.
        Ultrahigh-speed swept-source OCT angiography in exudative AMD.
        Ophthalmic Surg Lasers Imaging Retina. 2014; 45: 496-505
        • Waheed N.K.
        • Moult E.M.
        • Fujimoto J.G.
        • Rosenfeld P.J.
        Optical coherence tomography angiography of dry age-related macular degeneration.
        Dev Ophthalmol. 2016; 56: 91-100
        • Gorczynska I.
        • Migacz J.V.
        • Jonnal R.
        • et al.
        Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system.
        Proc SPIE Int Soc Opt Eng. 2017; : 10045
        • Fleckenstein M.
        • Mitchell P.
        • Freund K.B.
        • et al.
        The progression of geographic atrophy secondary to age-related macular degeneration.
        Ophthalmology. 2018; 125: 369-390
        • Sacconi R.
        • Corbelli E.
        • Carnevali A.
        • et al.
        Optical coherence tomography angiography in geographic atrophy.
        Retina. 2018; 38: 2350-2355
        • Ahn J.
        • Yoo G.
        • Kim J.T.
        • et al.
        Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 11-21
        • Borrelli E.
        • Shi Y.
        • Uji A.
        • et al.
        Topographical analysis of the choriocapillaris in intermediate age-related macular degeneration.
        Am J Ophthalmol. 2018; 196: 34-43
        • Lane M.
        • Moult E.M.
        • Novais E.A.
        • et al.
        Visualizing the choriocapillaris under drusen: comparing 1050-nm swept-source versus 840-nm spectral-domain optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT585-590
        • Moult E.M.
        • Waheed N.K.
        • Novais E.A.
        • et al.
        Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy.
        Retina. 2016; 36: S2-S11
        • Nassisi M.
        • Shi Y.
        • Fan W.
        • et al.
        Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study.
        Br J Ophthalmol. 2018 Aug 21; ([Epub ahead of print])
        • Zhang Q.
        • Chen C.L.
        • Chu Z.
        • et al.
        Automated quantitation of choroidal neovascularization: a comparison study between spectral-domain and swept-source OCT Angiograms.
        Invest Ophthalmol Vis Sci. 2017; 58: 1506-1513
        • Zhang Q.
        • Zheng F.
        • Motulsky E.H.
        • et al.
        A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography.
        Invest Ophthalmol Vis Sci. 2018; 59: 203-211
        • Zhang A.
        • Zhang Q.
        • Wang R.K.
        Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography.
        Biomed Opt Express. 2015; 6: 4130-4143
        • Zhang A.
        • Zhang Q.
        • Chen C.L.
        • Wang R.K.
        Methods and algorithms for optical coherence tomography-based angiography: a review and comparison.
        J Biomed Opt. 2015; 20: 100901
        • Kvanta A.
        • Casselholm de Salles M.
        • Amren U.
        • Bartuma H.
        Optical coherence tomography angiography of the foveal microvasculature in geographic atrophy.
        Retina. 2017; 37: 936-942
        • Roisman L.
        • Zhang Q.
        • Wang R.K.
        • et al.
        Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration.
        Ophthalmology. 2016; 123: 1309-1319
        • de Oliveira Dias J.R.
        • Zhang Q.
        • Garcia J.M.B.
        • et al.
        Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography.
        Ophthalmology. 2018; 125: 255-266
        • FDA. PLEX™ Elite 9000 Swept-Source OCT
        (Accessed August 2018)
        • Zheng F.
        • Gregori G.
        • Schaal K.B.
        • et al.
        Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging.
        Invest Ophthalmol Vis Sci. 2016; 57: 6256-6264
        • Zhang Q.
        • Shi Y.
        • Zhou H.
        • et al.
        Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography.
        Quant Imaging Med Surg. 2018; 8: 658-666
        • Fang Zheng M.
        • Zhang Q.
        • Shi Y.
        • et al.
        Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source OCT angiography.
        Am J Ophthalmol. 2019; 200: 110-122
        • Ramrattan R.S.
        • van der Schaft T.L.
        • Mooy C.M.
        • et al.
        Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging.
        Invest Ophthalmol Vis Sci. 1994; 35: 2857-2864
        • McLeod D.S.
        • Grebe R.
        • Bhutto I.
        • et al.
        Relationship between RPE and choriocapillaris in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2009; 50: 4982-4991
        • Biesemeier A.
        • Taubitz T.
        • Julien S.
        • et al.
        Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration.
        Neurobiol Aging. 2014; 35: 2562-2573
        • Nesper P.L.
        • Soetikno B.T.
        • Fawzi A.A.
        Choriocapillaris nonperfusion is associated with poor visual acuity in eyes with reticular pseudodrusen.
        Am J Ophthalmol. 2017; 174: 42-55
        • Schaal K.B.
        • Legarreta A.D.
        • Feuer W.J.
        • et al.
        Comparison between widefield en face swept-source OCT and conventional multimodal imaging for the detection of reticular pseudodrusen.
        Ophthalmology. 2017; 124: 205-214
        • Yehoshua Z.
        • de Amorim Garcia Filho C.A.
        • Nunes R.P.
        • et al.
        Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study.
        Ophthalmology. 2014; 121: 693-701